
Constricting force of filamentary protein rings evaluated from experimental results

I. Hörger,1 F. Campelo,2 A. Hernández-Machado,3 and P. Tarazona1

1Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
2Cell and Developmental Biology Programme, Centre de Regulació Genòmica, E-08003 Barcelona, Spain

3Departament d’Estructura i Constituents de la Matèria, Universitat de Barcelona, E-08028 Barcelona, Spain
�Received 4 August 2009; revised manuscript received 14 January 2010; published 26 March 2010�

We present a model of Z-ring constriction in bacteria based on different experimental in vitro results. The
forces produced by the Z ring due to lateral attraction of its constituent parts, estimated in previous studies that
were based on FtsZ filaments observed by atomic force microscopy, are in good agreement with an estimation
of the force required for recently found deformations in liposomes caused by FtsZ. These forces are calculated
within the usual Helfrich energy formalism. In this context, we also explain the apparent attraction of multiple
Z rings in the liposomes initially separated by small distances, as well as the stable distribution of rings
separated by distances greater than approximately twice the diameter of the cylindrical liposomes. We adapted
the model to the in vivo conditions imposed by the bacterial cell wall, concluding that the proposed mechanism
gives a qualitative explanation for the force generation during bacterial division.
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I. INTRODUCTION

There is a rapidly increasing interest in the biophysical
mechanisms for the formation and function of the septal or Z
ring needed for cell division of rodlike bacteria �1–8�. The
major component of that structure is a filament forming pro-
tein called FtsZ, a tubulin homolog in prokaryotic cells.
There is a running controversy on what the essential aspects
of the protein-protein and protein-membrane interactions re-
sponsible for the formation of the Z ring and its constricting
action on the membrane are �9�. Different theoretical models
have been developed to explore the effects of a Z ring, con-
densed by the effect of the lateral attractions between the
protein filaments, on a cylindrical membrane. Some models
�4–7� assume that the radial constricting forces emanate di-
rectly from the same lateral attractions that stabilize the ring,
while other models �2,3� assume the effects of a spontaneous
curvature of the filaments.

A recent experimental study of deformation of cylindrical
liposomes under the action of a modified FtsZ protein �10�
offers the opportunity to calibrate the possible effects of a
Z-ring in vitro. Liposomes, made of phospholipid multila-
mellar structures, were brought in contact with FtsZ-mts, a
modified protein with an amphipathic helix to be directly
attached to the phospholipid membranes. The result was the
formation of tubular liposomes with FtsZ-mts inside. The
addition of the polymerizing agent GTP produced the self-
assembly of FtsZ-mts rings, attached to the inner side of the
lamellar tubes, and associated to weak indentations of the
membrane. The relevance of that experiment comes from the
highly simplified composition of the in vitro system. It
makes clear that, when anchored to the phospholipid mem-
brane, FtsZ alone may self-assemble into ring structures and
create the constricting force needed to initiate cell constric-
tion. In this paper, we estimate the radial force needed to
produce the observed deformations and we compare it with
predictions �4,11� based on a very different set of in vitro
experiments �12�, in which FtsZ filaments adsorbed on mica
were observed by atomic force microscopy �AFM�. Under

the planar geometry imposed by the mica substrate, the fila-
ments form characteristic rolled structures, which were re-
produced in Langevin simulations of a theoretical model �4�
as a result of the lateral attractions between filaments. The
strength of these attractions was estimated from the aspect of
the planar rolls and transferred to similar simulations on cy-
lindrical geometry. The results showed that the condensation
of the filaments produced by their lateral interactions may
produce ring structures and lead to constricting forces in the
range of 50–100 pN �11�. The main question we address in
this paper is whether or not the observed constrictions of the
tubular liposomes in Ref. �10� could be produced by forces
of similar strength. The theoretical analysis presented here
provides an interpretation for the observed deformations of
the liposomes, and we also analyze the implications for the
in vivo function of the Z ring.

II. MATHEMATICAL MODEL

In the in vitro experiments by Osawa et al. �10�, the mul-
tilamellar vesicles are reported to be almost spherical before
the insertion of FtsZ. The anchoring of the FtsZ-mts, still
without the polymerizing agent GTP, produces tubular
shapes that we assume to be the results of a spontaneous
curvature H0 induced by the anchored amphiphatic tails of
the protein. Within the usual Helfrich Hamiltonian �13�, the
membrane free energy is written in terms of surface tension,
�, and bending rigidity, �, contributions,

Fmem =� dA��

2
�H − H0�2 + �� , �1�

where H is the total curvature and dA is the infinitesimal area
element. The minimization of Fmem with respect to the radius
of the cylindrical lamellar tubes, links the observed �equilib-
rium� radius R0�1.8 �m to the unknown parameters �, �,
and H0 in Eq. �1�, through the relation R0

−2=H0
2+2� /�.

The addition of GTP produces the formation of FtsZ fila-
ments and, according to the interpretation of the AFM ex-
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periments �4,5,14�, the lateral attractive interactions produce
Z-ring condensation. Z rings are observed in Ref. �10�
through a fluorescent dye and they appear associated to a
deformation of the tubular shapes, which we describe here
mathematically as a function, R�z�, where the z coordinate is
taken along the cylindrical axis and axial symmetry is as-
sumed. The ring position, r, corresponds to z=0 so that the
boundary conditions are R�0�=Rr and R�z�→R0 for large 	z	.
The contribution of the Z ring to the free energy is repre-
sented by

Fr =
 dl�L, �2�

i.e., a line tension, �L associated to the ring of FtsZ filaments,
and integrated over the transverse section of the tubular
membrane. The constricting radial force exerted by the Z
ring on the membrane is fr=�Fr /�Rr=2��L, and the main
aim of this work is to estimate the required value of this
force to produce the observed deformation of the cylindrical
liposomes in Ref. �10�. From the technical point of view, �L
can be considered as a Lagrange multiplier, to be determined
by the value of Rr �see Appendix A�.

III. RESULTS AND DISCUSSION

Within a linear analysis for the deformation,
U�z�=1−R�z� /R0, the minimization of the membrane free
energy outside the Z ring is given by the solution of

�4U�z̃�
� z̃4 + 2R0H0

�2U�z̃�
� z̃2 + U�z̃� = 0, �3�

with z̃=z /R0. Taking the limit of vanishing ring width, the
boundary conditions and the symmetry U�−z̃�=U�z̃� are sat-
isfied with 2U��0�=−�LR0 /� and the obvious symmetry
U�−z̃�=U�z̃�, where all the derivatives are taken with respect
to the dimensionless variable z̃. The solution of Eq. �3� sub-
ject to the boundary conditions U�z̃�→0 for large 	z̃	 and
U�0�=���R0−Rr� /R0 is given by

U�z̃� =
� exp�− �−	z̃	�

cos�	0�
cos��+	z̃	 − 	0� , �4�

where �
=��1
R0H0� /2 and tan�	0�=�− /�+. Notice that
R0H0 varies between 0 and 1, depending on the relative im-
portance of surface tension and spontaneous curvature, but
we have no experimental access to these parameters. The
thickness of the multilamellar membrane in Ref. �10� is
about that of 100–200 phospholipid bilayers; therefore, as-
suming a contribution of 20 kT from the bending rigidity of
each bilayer, we could estimate ��10−17 J. The surface ten-
sion of the tubular liposomes with equilibrium radius
R0�1.8 �m should be ��� / �2R0

2��10−6 N /m, i.e., about
ten nanoNewton per meter from each bilayer. The actual
value of � has to be between that upper limit and the null
surface tension expected for fully relaxed free standing tubu-
lar structures. Under the disordered conditions of the ob-
served tubular structures it is reasonable to accept a wide
distribution of � values between these two limits, which

means a wide distribution of R0H0 values, between 0 �for
maximum �� and 1 �for �=0�, at different portions of the
liposome. The generic shape of the deformation Eq. �4� is
that of a damped oscillation between the limits shown in Fig.
1 and only in the strict �=0 limit �R0H0=1� the oscillations
in U�z� become undamped, as a pearling instability of the
cylindrical shape.

The family of predicted shapes �Fig. 1� is in good quali-
tative agreement with the microscopy images of multilamel-
lar liposomes presented in Ref. �10� for maximum relative
deformation �
0.2–0.3. Figure 4 in Ref. �10� shows that
the membrane radius next to a constriction exceeds the equi-
librium radius although the resolution of the experimental
images does not allow the observation of a full period of the
membrane deformation. Moreover, the quantitative estima-
tion of R0H0 is limited by the dispersion in the deformation
shapes found in these images, probably because of the un-
controlled boundary conditions and different local conditions
of the tubular liposomes. An experimentally testable conse-
quence of the damped oscillatory deformations �Eq. �4�� in-
duced by a force ring comes from the interaction between
different protein rings, periodically distributed along a tubu-
lar liposome �see Appendix B�. Within the linear approxima-
tion �Eq. �3�� the deformation is a superposition of the
shifted damped oscillations �Eq. �4��. We estimate the
leading-order ��2� contribution to the free energy as a func-
tion of the ring separation z, and the stability with respect to
the collapse of neighbor rings. The results in Fig. 2 show that
Z-rings self-assembled at large relative distance are stable,
keeping similar distances between neighbors along the row.
However, rings initially set at a distance shorter than �5R0
would collapse until they leave a sparser periodic distribu-
tion. This theoretical prediction is in good agreement with
the experimental observations shown in Ref. �10�, where Z
rings initially formed at distances 	z	�1–2 �m collapse af-
ter 100–200 s, to let an apparently stable distribution of rings
separated by 4–6 �m.

Within the linear approximation �Eq. �3��, the radial force
exerted by the Z ring on the membrane is given by
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FIG. 1. Force required for a relative deformation �=0.28 of a
liposome with relative spontaneous curvature H0R0. The dashed
line is the result of the linear approximation �Eq. �5��, and the
continuous line gives an upper bound with nonlinear effects. The
inset represents the shape of the deformed membrane for H0R0=0
�continuous line�, H0R0=0.5 �dashed line�, and H0R0=1 �dotted
line�.
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fr � 2��L =
4���

R0

�2�1 − R0H0� . �5�

Therefore, within the uncertainty in the value of the shape
parameter 0�R0H0�1, and the values of R0 and � given
above, we get an upper bound for the required force
fr�20 pN to get the observed relative deformation ��0.2.
The possible nonlinear effects do not change this estimation
since they are relatively important only for R0H0
1, where
the predicted force is well below the linear upper bound �see
Appendix A�.

This upper estimate for the required force of the Z rings
observed in Ref. �10� remains below the estimation of the
ring force, fr�50 pN, obtained from the quantitative analy-
sis of AFM images �4,11� and based on the lateral attractive
interactions between FtsZ filaments. This theoretical assump-
tion provides a simple and robust explanation for very dif-
ferent in vitro experimental results: the formation and aspect
of the planar spiral structures �with a typical radius of
0.1 �m� observed by AFM on mica, and the formation of
constricting rings on the tubular liposomes �with radius

2 �m�. We cannot rule out the possible effects of a spon-
taneous curvature of the filaments, proposed in Refs. �2,3� as
a driving force for the constriction of the membrane, and
more experimental evidence would be needed to solve this
question. Nevertheless, the lateral interactions are certainly
needed to explain the presence of condensed Z rings, instead
of open helical structures �5,15�, and they should contribute
to the constriction of the membranes with any radius.

We address now the possible in vivo effects of the Z rings
in bacteria, taking into account the important differences
with the in vitro tubular liposomes �see Appendix C�. First of
all, the inner bacterial bilayer membrane is a hundred times
thinner, and therefore a hundred times less rigid than the
multilamellar wall of the liposomes in Ref. �10�. Therefore,
the same radial force which produces small deformation of
those tubular structures should be enough to produce the full
constriction of the bacterial membrane.

Another difference is that the elastic bacterial membrane
is inside a rigid external wall. The interaction between the
inner membrane and the outer wall in rodlike bacteria in-
volves a large number of specific proteins in a very complex
scenario that involves both the steady growth of the bacteria
along its long axis and its division when it reaches the criti-
cal size. There are attempts to incorporate these effects into
simplified physical models �16�, but the comparison with
in vivo experimental results is much more difficult and un-
certain than for the simpler biomimetic systems analyzed
here. In the context of the present work, we may ask for the
possible effects of the external wall under the simplest hy-
pothesis, assuming that the wall imposes the boundary con-
dition R�z��Rw�0.5 �m. Since Rw is much smaller than
the equilibrium radius R0 produced by the spontaneous mean
curvature H0 in Eq. �1�, we may assume H0=0 without quali-
tative changes in the following discussion. The relevant di-
mensionless parameter becomes here �=1 /2−Rw

2 � /�, which
goes to zero in the limit when the rigid wall becomes equal
to the equilibrium cylindrical radius. We expect to be far
from that limit and hence �
1 /2. The qualitative difference
with the free tubular deformation is that now the perturbation
produced by a force ring at z=0 is limited to a finite region
	z	�zm and, within the linear analysis, corresponds to the
solution of the inhomogeneous equation

�4U�z̃�
� z̃4 + �

�2U�z̃�
� z̃2 + U�z̃� = � , �6�

and the boundary conditions U�0�=�, and U�zm�=U��0�
=U��zm�=0. Minimization of the free-energy change with
respect to zm gives the relation between the ring force, fr, the
ring radius, Rr, and the deformation lateral extent, zm.

Figure 3�a� presents the deformation of the membrane for
extremal values of � and several relative deformations, up to
�=1 which gives the complete constriction of the cylindrical
membrane. The required force, fr, and the lateral extent of
the membrane deformation, zm, are presented in Fig. 3�b�.
Both fr and zm grow very rapidly, as �1/4, for small defor-
mations �see Appendix C�. For larger � the deformation ex-
tent is nearly saturated at zm�4Rw, while the required force
increases linearly up to a maximum value of �20� /R0.
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FIG. 2. Free-energy change in a liposome membrane with a
periodic distribution of Z rings as a function of the ring separations,
�a� H0R0=0 and �b� H0R0=0.5. For distances shorter than the
circles, the periodic distribution is unstable, and neighbor rings col-
lapse. The insets show the deformations for these critical distances
and a ring force fr of 3 �

R0
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FIG. 3. �a� Shape of the deformed bacterial membrane for
�=0.3, 0.7 and 0.99. �b� Extent of the deformation zm and �c� the
required force fr. Shown are the results for �=0.5, �p̃=0
�continuous line�, �=0.01, �p̃=0 �dashed line�, and
�=0.5,�p̃=1563 �dotted line, scaled by a factor 10−2�.
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Assuming a bending rigidity �=20kT, typical of a single
bilayer membrane, and the E. coli radius Rw=0.5 �m, the
maximum required force from Eq. �5� is found to be
fr
4 pN, well below the estimated value for in vitro Z
rings.

However there is still another qualitative difference be-
tween the deformations of cylindrical membranes and that of
E. coli or other rodlike bacteria during their division. These
bacteria keep a large osmotic pressure difference, �p�4 at-
mospheres, between the inner cytoplasm and the external
medium �17�. If a volume times �p term is added to the
membrane Hamiltonian, the linear equation for the deforma-
tions becomes

�4U�z̃�
� z̃4 + �� − �p̃�

�2U�z̃�
� z̃2 + �1 − �p̃�U�z̃� = � , �7�

with �= 1
2 −R0

2 �
� +�p̃ and the deformation for a given force

depends dramatically on the value of �p̃=�pR0
3 /�. Assum-

ing that the whole �p=4 atm is acting between the interior
of the lipidic membrane and the interstitial space between
this membrane and the rigid external wall, the in vitro esti-
mate of fr�50 pN would produce a fully negligible defor-
mation ���10−12� on the membrane. The drastic reduction
in the pressure difference to �p=0.01 atm would produce
the deformations and forces shown in Fig. 3. The extent of
the deformed segment becomes much shorter and the force
increases having now a maximum of fr�600 pN at
��0.4.

IV. CONCLUSIONS

The theoretical analysis of very different in vitro experi-
ments for FtsZ proteins presented here provides a compre-
hensive explanation of the deformation of tubular multila-
mellar liposomes monitored by fluorescence microscopy �10�
and of the protein filament structures observed by AFM on
mica �12�. The theoretical predictions �4,11,14� are based on
the role of the lateral attractive interaction between filaments
as the assumed driving force to form condensed aggregates
with the form of spiral rolls on planar substrates and rings on
cylindrical supports. The same mechanism leads to a robust
explanation for the generation of a constricting force in the
latter case �4,6,7,14�, in the range of 50–100 pN and nearly
independent of the cylindrical radius and the ring width. The
analysis presented here for the observed deformation of tu-
bular liposomes under in vitro formation of FtsZ rings fits
well with the order of magnitude of that force and explains
the experimentally observed trend for the distribution of
rings along cylindrical liposomes.

There are important differences between the modified
FtsZ-mts protein used in Ref. �10� to get its direct anchoring
to the phospholipid membrane and the FtsZ observed by
AFM on mica �12�. Any approach between the elements used
in these experiments, such as AFM images of FtsZ-mts an-
chored to a phospholipid membrane on a planar substrate,
would offer valuable experimental data for a firmer theoret-
ical analysis. Also, a more precise characterization of the
tubular liposome deformations, and their dependence with

in vitro factors controlling the polymerization of the FtsZ
protein monomers would be very helpful. Nevertheless, we
showed that the self-assembled structures of FtsZ in con-
trolled in vitro experiments are getting within the range of
physical modeling and analysis. The goal of these efforts
should be the comprehensive interpretation of the experi-
mental in vitro evidence on the basis of the elementary ef-
fective interactions between FtsZ monomers.

The physical understanding of the in vivo function of the
Z ring is much more uncertain. We have shown in this paper
that some qualitative aspects, such as the effect of the rigid
bacterial wall in its most simplified form, may be explored
with the theoretical methods used here. However, the role of
the volume constraint and the osmotic pressure difference
between the inner lipid membrane and the outer bacterial
wall would be crucial for the quantitative analysis of the
force required to achieve the bacterial division, and we pro-
pose further experimental studies in this line to achieve this
purpose. They are related to the active or passive role of the
external wall during the different phases of the bacterial
growth and division process �17�, and at the present stage
there is a lack of controlled experimental data on which
quantitative physical models can be based.

ACKNOWLEDGMENTS

The authors acknowledge fruitful discussions with F.
Monroy. This work was supported by the Dirección General
de Investigación of Spain under the Grants No. FIS2007-
65869-C03 �I.H. and P.T.� and No. FIS2009-12964-C05-02
�F.C. and A.H.M.� and by the Comunidad Autónoma de
Madrid under Grant No. s-0505/ESP-0299 �I.H. and P.T.�.

APPENDIX A: DEFORMATION PRODUCED
BY A SINGLE FORCE RING

1. Linear analysis

Assuming axial symmetry for the cylindrical liposomes
under the effect of a force ring, the tubular shape is described
by the radius R�z� taking z along the cylindrical axis. The
contributions to the membrane free energy are written in
terms of surface tension � and bending rigidity �:

Fmem =� dA�z���

2
�H�z� − H0�2 + �� , �A1�

where H0 is the spontaneous curvature of the membrane. The
differential element of area dA and the mean curvature H�z�
are

dA�z� = R�z��1 + R��z�2dz ,

H�z� =
1

R�z��1 + R��z�2
−

R��z�
�1 + R��z�2�3/2 . �A2�

The equilibrium radius of a cylindrical membrane R0 is re-
lated to the parameters � ,� and H0,
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1

R0
2 = H0

2 +
2�

�
. �A3�

The contribution of the Z ring �r� to the free energy might be
thought of as a series of line tensions ��z� placed between
z=−� and z=�,

Fr = 2��
−�

�

dz���z�R̃�z�� . �A4�

We use the functions R̃�z�=R0�1− Ũ�z�� to represent the
shape of the deformation between z=−� and z=�, i.e., within
the region under the action of the force ring, while we keep
R�z�=R0�1−U�z�� to represent the region 	z	�� where ��z�
vanishes. In the limit of ��R0, the only relevant parameter

should be the depth of the deformation, �= Ũ�0�=U�0�, but
allowing for a finite width of the force rings helps to make
clear what are the relevant matching conditions between

Ũ�z� and U�z� at z= 
�.
In its quadratic form, the free-energy functional for the

membrane deformation can be written like this:

�Fmem =
2��

R0
� dz�U�z�2

2
− R0

2�1 − R0H0�U��z�

+ R0
3H0U�z�U��z� + R0

4U��z�2

2
� . �A5�

Minimization of the functional �Fmem gives the deformations

U�z�=1− R�z�
R0

for 	z	��, while Ũ�z� for 	z	�� has to be ob-
tained from the minimization of �Fmem+�Fr, to include the
effects of the line tension ��z�.

In terms of the dimensionless variables z̃=z /R0, �̃=� /R0,
and �̃�z̃�=R0��z� /�, the equations that have to be solved are

�4U�z̃�
� z̃4 + 2R0H0

�2U�z̃�
� z̃2 + U�z̃� = 0,

	z̃	 � �̃ , �A6�

�̃�z̃� +
�4Ũ�z̃�

� z̃4 + 2R0H0
�2Ũ�z̃�

� z̃2 + Ũ�z̃� = 0,

	z̃	 � �̃ , �A7�

where the line tension density ��z� may be considered as a
Lagrange multiplier which is determined by a given shape of

Ũ�z�.
The matching conditions at z̃= 
�̃ are

R0H0�Ũ���̃� − U���̃�� + Ũ���̃� − U���̃� = 0, �A8�

R0H0�U��̃� − Ũ��̃�� + U���̃� − Ũ���̃� = 0, �A9�

with all the derivatives taken with respect to the dimension-
less variable z̃.

The finiteness of ��z� and the assumption of a smooth
distribution of the force that goes to 0 as 	z	→� make all the
derivatives continuous. Far from the force ring, the deforma-

tion vanishes, U�z̃�→0 for large 	z̃	, and the general solution
of Eq. �A6� for 	z̃	��̃ is given by

U�z̃� = −
� exp�− �−	z̃	�

cos�	0�
cos��+	z̃	 − 	0� , �A10�

with �
=��1
R0H0� /2.
Now we will show that the two remaining parameters, C

and 	0, are fixed by the value of U and its first derivative at
z=0. Therefore we will take the limit of vanishing force ring
width. Before we can do that, we will use Eqs. �A7�–�A9� to
determine the total force exerted by the Z ring which is equal
to the integrated line tension density, ��z̃� between z̃=−�̃ and
z̃= �̃,

fr = 2��L

= 2��
−�

�

dz��z�

= −
2��

R0
�

−�

�

dz�Ũ�z̃� + 2R0H0Ũ��z̃� + Ũ��z̃��

= −
4��

R0
�2R0H0Ũ���̃� + Ũ���̃�� . �A11�

Ũ�z̃� has to satisfy the matching conditions Eqs. �A8� and

�A9� which imply the equality of Ũ and U at 	z̃	=� up to the
third derivative,

Ũ��̃� = U��̃� ,

U�˜ ��̃� = U���̃� ,

U�˜ ��̃� = U���̃� ,

Ũ���̃� = U���̃� . �A12�

Furthermore, for given U�z̃� and U��z̃�, the subsequent
derivatives are fixed. This can be easily seen by splitting up
the fourth order differential operator in Eq. �A6�,
�z

4+ �2R0H0��z
2+1 into two second-order differential

operators, ��z
2+2�−�z+1���z

2−2�−�z+1�, with �− defined after
Eq. �A10�. The solution of the second-order differential op-
erator with the minus sign grows exponentially, so the only
physical solution is the exponentially decaying solution of
the second-order differential operator with the plus sign. This
operator is associated to the second-order differential
equation,

�2U�z̃�
� z̃2 + 2�−�U�z̃�

� z̃
+ U�z̃� = 0. �A13�

Together with Eqs. �A12�, we get for the ring force

fr =
4��

R0
�U���̃� + 2�−U��̃�� . �A14�

We take the limit of vanishing ring width, �→0, so that the
whole effect of the force ring is set by the depth of the
deformation, �ªU�0�, and we have U��0�=0 in order to
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guarantee a finite value of U��0� which is proportional to the
ring force Eq. �A11�. The matching conditions at z=0 are
reduced to

2U��0� = �̃L =
�LR0

�
, �A15�

in terms of the total line tension �L. The shape of the defor-
mation �Eq. �4�� becomes

U�z̃� = −
�

cos�	0�
exp�− �−	z̃	�cos��+	z̃	 − 	0� , �A16�

with tan�	0�= �−

�+ .
The generic shape of the deformation is that of a damped

oscillation, �− takes values between �2 /2 and 0 depending
on the relative importance of surface tension and spontane-
ous curvature. For H0=0 the membrane shape equation be-
comes

U�z̃� = − �2� exp�−
z̃

�2
�cos��

4
−

z̃
�2
� . �A17�

Here the period of the cosine is 2�2�. For increasing spon-
taneous curvature, the period becomes shorter and the decay
of the deformation slower. In the limit of vanishing surface
tension, �=0 �R0H0=1�, the oscillations in U�z� become un-
damped as a pearling instability of the cylindrical shape.
Now the exponential decay vanishes completely and the so-
lution is purely periodic with a period of 2�,

U�z̃� = − � cos�z̃� . �A18�

Another consequence of taking the limit of vanishing ring
width is that the contribution of the Z ring to the free energy
can be expressed as

Fr =
 dl� . �A19�

We can define an effective bending rigidity, �eff, so that the
ring force becomes

fr = �eff
�

R0
, �A20�

with �eff=4���2�1−R0H0�.

2. Beyond the linear analysis

The solutions that we have found for the shape of a lipo-
some deformed by a force ring and for the deformation depth
that is attained for a certain force are valid for small relative
deformations. The result of the minimization of the mem-
brane free-energy functional is a highly nonlinear fourth or-
der differential equation that has to be solved in order to
obtain the membrane shape R�z�. This might be done nu-
merically using shooting methods, but we have restricted our
analysis to the linearized equation which could be solved
analytically. In order to get an idea of the validity of this
approach, we can calculate an upper limit of the actual re-
quired force by its numerical calculation using the shape R�z�
determined in the linear analysis,

fr,nl = −
�Fmem

��
. �A21�

The ring force depends on two parameters, � and R0H0. For
fixed R0H0, of course, the error grows for increasing �. Fig-
ure 4�a� shows fr,nl as an upper bound of the ring force as a
function of � compared to the result of the linear approxi-
mation for R0H0=0.5. In Fig. 4�b� � is fixed to 0.28 and the
force is shown as a function of R0H0. For small values of
R0H0 the possible nonlinear effects do not change signifi-
cantly the estimated force. The relative error becomes impor-
tant for R0H0
1, close to the pearling instability of the cy-
lindrical shape. Here in the linear estimation, the force
vanishes completely whereas the nonlinear upper bound re-
mains finite.

Figure 4�c� reflects the degree of validity of the linear
approximation as a function of the spontaneous curvature
and the deformation depth. The different levels of gray rep-
resent sections with growing maximal error. In summary, the
linear analysis gives a reasonable estimation of the deforma-
tion force and shape for small deformations up to about 25%
and spontaneous curvatures up to about 0.8R0.

APPENDIX B: DEFORMATION PRODUCED BY A
PERIODIC ROW OF FORCE RINGS

Instead of having one force ring at z=0 we set up a peri-
odic distribution of force rings separated by a distance zsR0

and located at z=
kzs

2 with k= 
1,2 ,3 , . . .. So, the new
boundary conditions are

U�

kzs

2
� = � ,

U��

kzs

2
� = 0, �B1�

taking again the limit of vanishing ring width. Now, the ex-
ponentially growing part of the solution of Eq. �A6� will also
contribute to the shape of the membrane. We will distinguish
between the general case of a membrane with finite surface
tension and the limit of �=0. For R0H0�1, the membrane
shape for 	z̃	�

zs

2 can be expressed as
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FIG. 4. Force required for �a� a relative deformation � of a
liposome with spontaneous curvature R0H0=0.5 and �b� a relative
deformation �=0.28 of a liposome with spontaneous curvature
R0H0. The dashed line is the result of the linear approximation and
the continuous line gives an upper bound with nonlinear effects. �c�
Relative maximal error in the linear estimation for different values
of R0H0 and �. For parameter pairs within the black �gray, light
gray� region, the maximal error is 0.1 �0.5 and 1�.
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U�z̃� = 2��C+ cos��+z̃�cosh��−z̃� + C− sin��+z̃�sinh��−z̃�� ,

�B2�

with

C
 =
��
 sinh� �−zs

2 �cos� �+zs

2 �
�+ sinh��−zs� + �− sin��+zs�

−
�� cosh� �−zs

2 �sin� �+zs

2 �
�+ sinh��−zs� + �− sin��+zs�

. �B3�

As before, the effective bending rigidity of the membrane is
related to the third derivative of U at the location of the force
ring,

�eff�zs� = 4��
U�� zs

2 �
�

=
4��

R0

�2�1 − R0H0�

=
cosh��−zs� − cos��+zs�

sinh��−zs� + tan�	0�sin��+zs�
. �B4�

As we have mentioned above, �eff is a function of the dis-
tance between the force rings, zs. For constant ring force it is
related to the membrane free energy through

�Fmem =
R0

2fr
2

2�eff
. �B5�

For vanishing ring separation �eff approaches zero as it is
defined as the effective bending rigidity of the membrane per
period. For large values of zs, the effective bending rigidity
reaches the same value as for a single force ring. This is the
limit of non interacting rings where the shape of the mem-
brane adopts the form of Eq. �A16� centered at the site of
each force ring. Between these two extremes, �eff�zs� expe-
riences a series of exponentially decaying maxima and
minima for sin��+zs�=0,

zs = l�� 2

1 + R0H0
, �B6�

with l=1,2 , . . .. For increasing relative spontaneous curva-
ture the decay becomes less efficient and in the limit of
R0H0=1 it vanishes completely. In this case, �eff approaches
zero for force rings separated by a relative distance of 2� as
a consequence of the pearling instability of the cylindrical
shape. The membrane free-energy change is represented as a
function of the ring separation in Fig. 5�a� for different val-
ues of R0H0.

For l=1, �eff reaches its maximum. This means that for
distances zs�zmax the separation of the force rings is
energetically more favorable than its approach. When we
consider a distribution of rings that is limited to a finite tube,
the possibility of ring separation is also limited and so the
question to ask is whether the periodic distribution is
stable. Therefore we imagine two rings at a distance of
zs−d and its neighbor rings at a distance of zs+d.
We can calculate an effective bending rigidity �eff�zs ,d�
= 1

2 ��eff�zs−d�+�eff�zs+d��. For zs=zmax, �eff�zs ,d� has a
maximum for d=0. That means that the periodic distribution
is unstable. For a small fluctuation in the periodicity, two

neighbor rings will enter into the attractive part of the effec-
tive potential and collapse. We have to search for the critical
distance zc where �eff�zs ,d� has a minimum for d=0. We
obtain zc by solving the transcendental equation

tan��+zc� =
�− sinh��−zc�
�+ cosh��−zc�

, zc � zmax. �B7�

For relative spontaneous curvatures well below one, Eq. �B7�
can be approximated by

zc = zmax�3

2
−

	0

�
� . �B8�

Figure 5�b� shows this critical distance as well as zmax as a
function of the relative spontaneous curvature. The decreas-
ing values for growing R0H0 reflect the decreasing period
length in the damped harmonic oscillation of the membrane
shape produced by a single force ring.

In summary we can state that rings formed at small dis-
tances feel an effective attractive potential and collapse until
leaving a periodic distribution with distances greater than
�4.5–5.5R0, depending on R0H0. For zs values between the
maximum of the free-energy change and the critical distance
zc the effective attraction between the rings results from the
instability of the periodic distribution. If the distance be-
tween one ring and its right and left neighbors are zs+d and
zs−d, then the free-energy change has a minimum for d=0
only for zs�zc.

APPENDIX C: DEFORMATIONS WITHIN A RIGID WALL

When surrounded by a rigid wall, the radius of the mem-
brane is limited to R�z��Rw. A measure for the difference
between Rw and the equilibrium radius of the membrane R0
is given by the parameter �,

� =
1

2
− Rw

2 �

�
−

1

2
Rw

2 H0
2 + �p̃ , �C1�

with �p̃=�pR0
3 /�. Here we have also added a volume times

�p term, Fosm=−�dV�z��p, to the membrane free energy in
order to take account of the osmotic pressure difference be-
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FIG. 5. �a� Free energy change in a liposome membrane with a
periodic distribution of Z rings as a function of the ring separation
for R0H0=0 �upper line�, R0H0=0.5 �middle line�, and R0H0=0.9
�lower line�. �b� Distance zmax between periodically distributed
force rings where the free-energy change in the liposome has its
maximum. For ring separations shorter than zc �circles in �a�� the
periodic distribution is unstable and neighbor rings collapse.
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tween the interior of the bacterial cell and the external me-
dium. � vanishes for Rw=R0 and it increases with growing
difference between Rw and R0. The linearized shape equation
becomes

�4U�z̃�
� z̃4 + �

�2U�z̃�
� z̃2 + �U�z̃� = � , �C2�

with �=1−�p̃ and �=�+2H0R0−�p̃, choosing H0R0 and
�p̃ as independent parameters. The deformed radius, R�z�
cannot exceed Rw at any point along the cylinder. This im-
plies a change in the boundary conditions that limits the
deformation to a finite range, 	z̃	�zm,

U�0� = � ,

U��0� = U�
zm� = U��
zm� = 0. �C3�

As before, we assume an infinitesimal force ring width. At
	z̃	=zm the membrane exerts a force proportional to U��
zm�
that is counterparted by the cell wall. Due to the constraint
U��
zm�=0 this force remains finite. The general solution of
Eq. �C2� for �p̃�1 and �2�4�1−�p̃� is

U�z̃� =
�

�
+ C exp�
�−

�

2



1

2
��2 − 4�z̃� . �C4�

1. �p̃=0

For �p̃=0 and R0�Rw we find that �2−4�0 for all pos-
sible values of RwH0 and �

� and so the shape of the deforma-
tion for 	z̃	�zm is

U�z̃� = � − �� + ��cos��+z̃�cosh��−z̃� + C1 sin��+z̃�sinh��−z̃�

+ C2�sin��+z̃�cosh��−z̃� −
�+

�−cos��+z̃�sinh��−z̃�� ,

�C5�

with

�
 =�1

2



�

4
�C6�

and

C1 = �� + ��
�+�−

�
�cos�2�+zm� − cosh�2�−zm��

+
2�

�
�sin��+zm�sinh��−zm�� ,

C2 =
�� + ���−

�
��− sin�2�+zm� + �+ sinh�2�−zm��

+
2��−

�
��− cosh��−zm�sin��+zm�

+ �+ cos��+zm�sinh��−zm�� ,

� = 1 − ��−�2 cos�2�+zm� − ��+�2cosh�2�−zm� . �C7�

The coefficients C1 and C2 still contain � and zm. In prin-
ciple, their relation is given by fixing � and searching for the

minimum of the membrane free energy with respect to zm.
But, actually, the membrane free energy has no local mini-
mum for zm, the minimum is of global nature as zm is found
to be just at the limit between deformations that fulfill the
condition R�z��Rw and solutions, where the radius of the
membrane exceeds the cell wall. In the latter case, an extra
energy term must be added accounting for the infinitely high
cost for penetrating the rigid cell wall. The relation between
� and zm can be obtained by calculating the minimum of the
constriction force for a fixed deformation depth with respect

to zm. We have to solve �
�zm

Ũ��zm�=0 and that leads to

� = �
��− sin��+zm� − �+ sinh��−zm��2

2�+�− sin��+zm�sinh��−zm�
. �C8�

This relation is equal to Ũ��zm�=0. The ring force, as a func-
tion of zm becomes

fr =
4��

Rw
Ũ��0� =

4���

Rw
��+cosh��−zm�

sin��+zm�
− �− cos��+zm�

sinh��−zm�� .

�C9�

2. �p̃š � �1

For large osmotic pressure differences, we can approxi-
mate ���p̃ and the shape equation becomes

U�z̃� = − 1 + C1
+ sin��−z̃� + C1

− sinh��−z̃� + C2
+ cos��+z̃�

+ C2
− cosh��+z̃� , �C10�

with

�
 = �R0H0 
 �R0
2H0

2 − 1 + �p̃ � ��p̃�1/4
¬ � �C11�

and

�C1

 = 
 ��1 − cosh��zm��sin��zm��


 ��1 − cos��zm��sinh��zm��


 ��cosh��zm�sin��zm� + cos��zm�sinh��zm�� ,

�C2

 = �1 
 cos��zm���1 � cosh��zm��


 sin��zm�sinh��zm�


 ��cos��zm�cosh��zm� � sin��zm�sinh��zm���

= 2�1 − cos��zm�cosh��zm�� . �C12�
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The deformation extent and the ring force are now, respec-
tively,

� = 1 −
sinh��zm�sin��zm�

cosh��zm� − cos��zm�
,

fr =
4��

Rw
�p̃3/4cosh��zm�sin��zm� − cos��zm�sinh��zm�

cosh��zm� − cos��zm�
.

�C13�

3. Small deformations far from equilibrium

In all cases, for deformations of a membrane far from
equilibrium ���0�, both the deformation extent, zm, and the
deformation force, fr, grow like �1/4,

zm = �6�2�

�
�1/4

�C14�

fr =
8��

Rw

�2��3/4

�3
�1/4. �C15�
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